Dual-RICH simulations (Update on magnetic field effect)

Alessio Del Dotto for the EICPID RICH meeting 10-5-2015

Field effect – distortion for RICH

- RICH is in magnetic field
- Effect estimated using a new field mesh (map version 3) of 5 cm step in (z,r), a mesh of 1 cm step in (z,r) has been obtained interpolating the original map v3 (map v3 by Paul Brindza)
- The bending of the trajectory has been evaluated using a semianalytical method (the same used in the past talk)

Field effect – distortion for RICH

Field components along the track for $\eta = 3$

 θ is the bending angle of the tangent versor along the track in z = [220,385] cm (RICH position)

RMS = $\Delta\theta$ --> error on the Cherencov angle due to the bending of the track

2

Field effect – distortion for RICH

 $\Delta\theta$ vs η for three different momenta of the particle Single p.e error un the Cherencov angle due to the field distortion

Error vs transverse field

This effect is important for the photons coming from the gas.

For CF4 gas the typical 1 p.e. error contributions on the Cherenkov angle is order 0.5 - 0.3 mrad (see backup slides).

Error for different RICH regions

θ [deg]

10 15 20 25

0 [deg]

10 15 20

0 [deg]

10 15 20

Field design – important parameter

- The mean value of the component of B perpendicular to the track at a given angle is strictly proportional the the bending error on the Cherenkov angle.
- Two ways to reduce this error:
 - reduce the magnitude of the field
 - chenge the field geometry (field parallel/antiparallel to the track momentum)

Towards a realistic mirror configuration

- A 2D optical ray tracing software has been developed (based on C++)
- The reflection of the Cherenkov photons can be simulated for different radiators and different mirror configurations
- The photon-detector position can be studied in relation to the focal plane

Comments and next developments

- With field map version 3, the error on the Cherencov ring has a small but not negligible impact on the Cherencov angle
- We have a tool to try different field map
- Next step: use the ray tracer to study useful configurations:
 - Parameters and number of mirrors (two spherical mirrors configuration under study)
 - Position of the photon-detector/focal plane

Focusing configuration – mirror (ideal)

Main error contributions:

- Chromatic
- emission λ uncertainty

Aerogel

- Pixel-size uncertainty
- pixel detector granularity

Gas

Scattering of light
 λ in the range [300,500] nm, UV light filtered

Chromatic error (1 p.e.):

Pixel error (1 p.e.):

$$\sigma_{\theta_c}^{\lambda} = \frac{dn_a}{d\lambda} \frac{\beta}{\sin \theta_c} \frac{\Delta \lambda}{\sqrt{12}}$$

$$\sigma_{\theta_c}^s = \frac{n_g \cos^3 \theta_r}{f} \frac{s}{\sqrt{6}}$$

$$\sigma_{\theta_c}^{\lambda} = \frac{dn_g}{d\lambda} \frac{1}{n_g^2 \beta \sin \theta_c} \frac{\Delta \lambda}{\sqrt{12}}$$

$$\sigma_{\theta_c}^s = \frac{1}{f n_g^2} \frac{s}{\sqrt{6}}$$

Mirror focusing – chromatic error

Geometry independent error: does not depend on the focal length

$$n_a^2(\lambda) = 1 + \frac{0.096\lambda^2}{\lambda^2 - 84^2}$$

$$< \lambda >= 400 \ nm \quad = 5 \ GeV$$

M. Contalbrigo talk at RICH 2013 (http://rich2013.kek.jp/program.html)

Mirror focusing – pixel error

 $pixel\ size:\ s=3\ mm$

- In a spherical mirror configuration, the error due to the magnetic bending has to be added to the chromatic and pixel size errors
- Others errors that have to be added are:
 - σ_{emission} (if the mirror is tilted/aberrations) \rightarrow geometry dependent
 - σ_{track} (due to the error on the track)
 - σ_{magnetic} (due to the bending of the track)

